Dextran, Biotin, 10,000 MW, Lysine Fixable (BDA-10,000)
Invitrogen17万+抗体限时买二赠一,靶点广,灵活用!
Dextran, Biotin, 10,000 MW, Lysine Fixable (BDA-10,000)
Invitrogen™

Dextran, Biotin, 10,000 MW, Lysine Fixable (BDA-10,000)

Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of liveRead more
Have Questions?
Catalog NumberQuantity
D195625 mg
Catalog number D1956
Price (CNY)
3,772.00
飞享价
Ends: 31-Dec-2025
5,112.00
Save 1,340.00 (26%)
Each
Add to cart
Quantity:
25 mg
Price (CNY)
3,772.00
飞享价
Ends: 31-Dec-2025
5,112.00
Save 1,340.00 (26%)
Each
Add to cart
Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of live cells, and to report the hydrodynamic properties of the cytoplasmic matrix. The labeled dextran is commonly introduced into the cells via microinjection.

Need a different emission spectrum or longer tracking? View our other mammalian cell tracking products.

Dextran Specifications:

Label (Ex/Em): None (Biotinylated)
Size: 10,000 MW
Charge: Anionic
Fixable: Fixable via Lysine

High Manufacturing Standards of Molecular Probes™ Dextrans
We offer more than 50 fluorescent and biotinylated dextran conjugates in several molecular weight ranges. Dextrans are hydrophilic polysaccharides characterized by their moderate-to-high molecular weight, good water solubility, and low toxicity. They also generally exhibit low immunogeniticy. Dextrans are biologically inert due to their uncommon poly-(α-D-1,6-glucose) linkages, which render them resistant to cleavage by most endogenous cellular glycosidases.

In most cases, Molecular Probes™ fluorescent dextrans are much brighter and have higher negative charge than dextrans available from other sources. Furthermore, we use rigorous methods for removing as much unconjugated dye as practical, and then assay our dextran conjugates by thin-layer chromatography to help ensure the absence of low molecular weight contaminants.

A Wide Selection of Substituents and Molecular Weights
Molecular Probes™ dextrans are conjugated to biotin or a wide variety of fluorophores, including seven of our Alexa Fluor™ dyes (Molecular Probes dextran conjugates–Table 14.4) and are available in these nominal molecular weights (MW): 3,000; 10,000; 40,000; 70,000; 500,000; and 2,000,000 daltons.

Dextran Net Charge and Fixability
We employ succinimidyl coupling of our dyes to the dextran molecule, which, in most cases, results in a neutral or anionic dextran. The reaction used to produce the Rhodamine Green™ and Alexa Fluor 488 dextrans results in the final product being neutral, anionic, or cationic. The Alexa Fluor, Cascade Blue, lucifer yellow, fluorescein, and Oregon Green dextrans are intrinsically anionic, whereas most of the dextrans labeled with the zwitterionic rhodamine B, tetramethylrhodamine, and Texas Red™ dyes are essentially neutral. To produce more highly anionic dextrans, we have developed a proprietary procedure for adding negatively charged groups to the dextran carriers; these products are designated “polyanionic” dextrans.

Some applications require that the dextran tracer be treated with formaldehyde or glutaraldehyde for subsequent analysis. For these applications, we offer “lysine-fixable” versions of most of our dextran conjugates of fluorophores or biotin. These dextrans have covalently bound lysine residues that permit dextran tracers to be conjugated to surrounding biomolecules by aldehyde-mediated fixation for subsequent detection by immunohistochemical and ultrastructural techniques. We have also shown that all of our 10,000 MW Alexa Fluor dextran conjugates can be fixed with aldehyde-based fixatives.

Key Applications Using Labeled Dextrans
There are a multitude of citations describing the use of labeled dextrans. Some of the most common uses include:

Neuronal tracing (anterograde and retrograde) in live cells
Cell lineage tracing in live cells
Neuroanatomical tracing
Examining intercellular communications (e.g., in gap junctions, during wound healing, and during embryonic development)
Investigating vascular permeability and blood–brain barrier integrity
Tracking endocytosis
Monitoring acidification (some dextran–dye conjugates are pH-sensitive)
Studying the hydrodynamic properties of the cytoplasmic matrix

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Label or DyeBiotin and Other Haptens
Product TypeDextran
Quantity25 mg
Shipping ConditionRoom Temperature
Product LineInvitrogen
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C).

Citations & References (95)

Citations & References
Abstract
Biotin-dextran: fast retrograde tracing of sciatic nerve motoneurons.
Authors:Todorova N, Rodziewicz GS
Journal:J Neurosci Methods
PubMed ID:8618412
We present evidence that biotin-dextran (BD) provides good fast retrograde tracing in the rat sciatic nerve. Using BD injected distal to a crush injury of either tibial or common peroneal nerves, spinal cord motoneuron counts after 48 h compare favorably with counts obtained using horseradish peroxidase. Advantages of BD include ... More
Niemann-Pick C1 functions in regulating lysosomal amine content.
Authors:Kaufmann AM, Krise JP,
Journal:J Biol Chem
PubMed ID:18591242
'Mutations in the late endosomal/lysosomal membrane protein Niemann-Pick C1 (NPC1) are known to cause a generalized block in retrograde vesicle-mediated transport, resulting in the hyper-accumulation of multiple lysosomal cargos. An important, yet often overlooked, category of lysosomal cargo includes the vast array of small molecular weight amine-containing molecules that are ... More
Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines.
Authors:Walter GC, Phillips RJ, Baronowsky EA, Powley TL,
Journal:J Neurosci Methods
PubMed ID:19056424
'None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, ... More
The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy.
Authors:Wouterlood FG, Jorritsma-Byham B
Journal:J Neurosci Methods
PubMed ID:7690870
'We investigated the properties of biotinylated dextran-amine (BDA) as a neuroanatomical tracer at the electron microscopic level and we compared the results with those obtained previously with another tracer, the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L). BDA was injected into various brain areas of rats. Following survival and fixation, vibratome sections were ... More
Gap junctional communication in the early Xenopus embryo.
Authors:Landesman Y, Goodenough DA, Paul DL
Journal:J Cell Biol
PubMed ID:10953017
'In the Xenopus embryo, blastomeres are joined by gap junctions that allow the movement of small molecules between neighboring cells. Previous studies using Lucifer yellow (LY) have reported asymmetries in the patterns of junctional communication suggesting involvement in dorso-ventral patterning. To explore that relationship, we systematically compared the transfer of ... More