Dextran, Fluorescein, 2,000,000 MW, Anionic, Lysine Fixable
Dextran, Fluorescein, 2,000,000 MW, Anionic, Lysine Fixable
Invitrogen™

Dextran, Fluorescein, 2,000,000 MW, Anionic, Lysine Fixable

Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of liveRead more
Have Questions?
Catalog NumberQuantity
D713710 mg
Catalog number D7137
Price (CNY)
5,130.00
Each
Add to cart
Quantity:
10 mg
Price (CNY)
5,130.00
Each
Add to cart
Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of live cells, and to report the hydrodynamic properties of the cytoplasmic matrix. The labeled dextran is commonly introduced into the cells via microinjection.

Need a different emission spectrum or longer tracking? View our other mammalian cell tracking products.

Dextran Specifications:

Label (Ex/Em): Fluorescein (494/521)
Size: 2,000,000 MW
Charge: Anionic
Fixable: Fixable via Lysine

High Manufacturing Standards of Molecular Probes™ Dextrans
We offer more than 50 fluorescent and biotinylated dextran conjugates in several molecular weight ranges. Dextrans are hydrophilic polysaccharides characterized by their moderate-to-high molecular weight, good water solubility, and low toxicity. They also generally exhibit low immunogeniticy. Dextrans are biologically inert due to their uncommon poly-(α-D-1,6-glucose) linkages, which render them resistant to cleavage by most endogenous cellular glycosidases.

In most cases, Molecular Probes™ fluorescent dextrans are much brighter and have higher negative charge than dextrans available from other sources. Furthermore, we use rigorous methods for removing as much unconjugated dye as practical, and then assay our dextran conjugates by thin-layer chromatography to help ensure the absence of low molecular weight contaminants.

A Wide Selection of Substituents and Molecular Weights
Molecular Probes™ dextrans are conjugated to biotin or a wide variety of fluorophores, including seven of our Alexa Fluor™ dyes (Molecular Probes dextran conjugates–Table 14.4) and are available in these nominal molecular weights (MW): 3,000; 10,000; 40,000; 70,000; 500,000; and 2,000,000 daltons.

Dextran Net Charge and Fixability
We employ succinimidyl coupling of our dyes to the dextran molecule, which, in most cases, results in a neutral or anionic dextran. The reaction used to produce the Rhodamine Green™ and Alexa Fluor 488 dextrans results in the final product being neutral, anionic, or cationic. The Alexa Fluor, Cascade Blue, lucifer yellow, fluorescein, and Oregon Green dextrans are intrinsically anionic, whereas most of the dextrans labeled with the zwitterionic rhodamine B, tetramethylrhodamine, and Texas Red™ dyes are essentially neutral. To produce more highly anionic dextrans, we have developed a proprietary procedure for adding negatively charged groups to the dextran carriers; these products are designated “polyanionic” dextrans.

Some applications require that the dextran tracer be treated with formaldehyde or glutaraldehyde for subsequent analysis. For these applications, we offer “lysine-fixable” versions of most of our dextran conjugates of fluorophores or biotin. These dextrans have covalently bound lysine residues that permit dextran tracers to be conjugated to surrounding biomolecules by aldehyde-mediated fixation for subsequent detection by immunohistochemical and ultrastructural techniques. We have also shown that all of our 10,000 MW Alexa Fluor dextran conjugates can be fixed with aldehyde-based fixatives.

Key Applications Using Labeled Dextrans
There are a multitude of citations describing the use of labeled dextrans. Some of the most common uses include:

Neuronal tracing (anterograde and retrograde) in live cells
Cell lineage tracing in live cells
Neuroanatomical tracing
Examining intercellular communications (e.g., in gap junctions, during wound healing, and during embryonic development)
Investigating vascular permeability and blood–brain barrier integrity
Tracking endocytosis
Monitoring acidification (some dextran–dye conjugates are pH-sensitive)
Studying the hydrodynamic properties of the cytoplasmic matrix

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Label or DyeClassic Dyes
Product TypeDextran
Quantity10 mg
Shipping ConditionRoom Temperature
Excitation/Emission494/518 nm
Product LineInvitrogen
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C) and protect from light.

Citations & References (16)

Citations & References
Abstract
T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases.
Authors:Mempel TR, Henrickson SE, Von Andrian UH
Journal:Nature
PubMed ID:14712275
'Primary T-cell responses in lymph nodes (LNs) require contact-dependent information exchange between T cells and dendritic cells (DCs). Because lymphocytes continually enter and leave normal LNs, the resident lymphocyte pool is composed of non-synchronized cells with different dwell times that display heterogeneous behaviour in mouse LNs in vitro. Here we ... More
Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching.
Authors:Berk DA, Swartz MA, Leu AJ, Jain RK
Journal:Am J Physiol
PubMed ID:8769769
'Despite its relevance to the physiology of lymph formation and propulsion, the instantaneous flow velocity in single lymphatic capillaries has not been measured to date. The method of fluorescence recovery after photobleaching (FRAP) was adapted for this purpose and used to characterize flow in the lymphatic capillaries in tail skin ... More
Optimization of a microfluidic mixer for studying protein folding kinetics.
Authors:Hertzog DE, Ivorra B, Mohammadi B, Bakajin O, Santiago JG
Journal:Anal Chem
PubMed ID:16808436
'We have applied an optimization method in conjunction with numerical simulations to minimize the mixing time of a microfluidic mixer developed for protein folding studies. The optimization method uses a semideterministic algorithm to find the global minimum of the mixing time by varying the mixer geometry and flow conditions. We ... More
Contribution of early cells to the fate map of the zebrafish gastrula.
Authors:Helde KA, Wilson ET, Cretekos CJ, Grunwald DJ
Journal:Science
PubMed ID:8036493
Previously, a tissue-specific fate map was compiled for the gastrula stage of the zebrafish embryo, indicating that development subsequent to this stage follows a reproducible pattern. Here it is shown that each early zebrafish blastomere normally contributes to a subset of the gastrula and thus gives rise to a limited ... More
Structure and composition of aggregates in two large European rivers, based on confocal laser scanning microscopy and image and statistical analyses.
Authors:Luef B, Neu TR, Zweimüller I, Peduzzi P,
Journal:Appl Environ Microbiol
PubMed ID:19633114
Floating riverine aggregates are composed of a complex mixture of inorganic and organic components from their respective aquatic habitats. Their architecture and integrity are supplemented by the presence of extracellular polymeric substances of microbial origin. They are also a habitat for virus-like particles, bacteria, archaea, fungi, algae, and protozoa. In ... More