What is the function of the TNF pathway?

The TNF signaling pathway plays an important role in various physiological and pathological processes, including cell proliferation, differentiation, apoptosis, and modulation of immune responses and induction of inflammation. TNF (Tumor Necrosis Factor) is a multifunctional proinflammatory cytokine, with effects on lipid metabolism, coagulation, insulin resistance, and endothelial function. Ever since its discovery two decades ago, TNF has been considered as an anti-cancer agent. Members of the TNFR (TNF Receptor) super family can send both survival and death signals to cells.

TNF acts through two receptors, TNFR1 (TNF Receptor-1) and TNFR2 (TNF Receptor-2). TNFR1 is expressed by all human tissues and is the major signaling receptor for TNF alpha. TNFR2 is mostly expressed in immune cells and mediates limited biological responses. TNFR2 binds both TNF alpha and TNF beta (1,4).
 

TNF alpha pathway

TNF alpha, a pro-inflammatory cytokine, is produced by many cell types, including macrophages, lymphocytes, fibroblasts, and keratinocytes, in response to inflammation, infection, and other environmental stresses. TNF alpha induces a heterogeneous array of biological effects according to cell type. TNF alpha acts by binding to its receptors, TNFR1 (p55) and TNFR2 (p75), on the cell surface. Most cells express TNFR1, which is believed to be the major mediator of the cytotoxicity of TNF alpha (3,5). Binding of TNF alpha to its two receptors, TNFR1 and TNFR2, results in recruitment of signal transducers that activate at least three distinct effectors. Through complex signaling cascades and networks, these effectors lead to the activation of Caspases and two transcription factors, Activation Protein-1 and NF-KappaB (Nuclear Factor-KappaB). Initially, TRADD (TNFR-Associated Death Domain) protein binds to TNFR1. Then, TRADD recruits FADD (Fas-Associated Death Domain), RAIDD (RIP-Associated ICH-1/CED-3-homologous protein with a Death Domain), MADD (MAPK Activating Death Domain) and RIP (Receptor-Interacting Protein). Binding of TRADD and FADD to TNFR1 leads to the recruitment, oligomerization, and activation of Caspase 8. Activated Caspase 8 subsequently initiates a proteolytic cascade that includes other Caspases (Caspases 3, 6, and 7) and ultimately induces apoptosis. Caspase 8 also cleaves BID (BH3 Interacting Death Domain). tBID (Truncated BID) disrupts the outer mitochondrial membrane to cause release of the pro-apoptotic factors CytoC (Cytochrome-C). CytoC that is released from the intermembrane space binds to APAF1 (Apoptotic Protease Activating Factor-1), which recruits Caspase 9 and in turn can proteolytically activate Caspase 3. A novel 61-kDa protein kinase RIP2 is related to RIP that is a component of TNFR1 which mediates the recruitment of Caspase death proteases. Overexpression of RIP2 signaled both NF-KappaB activation and cell death (3, 5-9).
 

Activation of signaling pathways by TNF RAF-2

TRAF2 (TNF Receptor-Associated Factor-2) has been implicated in the activation of two distinct pathways that leads to the activation of Activation Protein-1 via the JNK (Jun NH2-terminal Kinase), MEKK (MEK Kinase), p38 and, together with RIP, NF-KappaB activation, via the NIK (NF-KappaB-Inducing Kinase). TNF alpha has been shown to activate MAPKs (Mitogen Activated Protein Kinases): ERK1 and ERK2 (Extracellular signal-Regulated Kinases). Overexpression of SODD (Silencer of Death Domains), a 60 kDa protein, associated with the DD of TNFRI suppresses TNF-induced cell death and NF-KappaB activation demonstrating its role as a negative regulatory protein for these signaling pathways.
 

TNF beta interaction with TNFR2

TNFR2 is the receptor for TNF beta. TNF beta is produced by activated lymphocytes and can be cytotoxic to many tumor and other cells. In neutrophils, endothelial cells, and osteoclasts, TNF beta can lead to activation while in many other cell types it can lead to increased expression of MHC and adhesion molecules.
 

TNF pathway signaling implication in disease

TNF signaling has been implicated in many other diseases, including multiple sclerosis, Alzheimer’s disease, and TRAPS (TNF-Receptor-Associated Periodic Syndrome). A better understanding of TNF and its relatives should eventually result in the development of small molecules that can successfully inhibit and modulate the biological activity of these cytokines and thereby provide new avenues for therapeutic intervention.
 

TNF signaling pathway

TNF signaling pathway schematic
Cartoon schematic showing what symbols used in the pathway schematic represent.
TNF signaling pathway schematic
Cartoon schematic showing what symbols used in the pathway schematic represent.
References
  1. Raasch P, Schmitz U, Patenge N, et al. (2010) Non-coding RNA detection methods combined to improve usability, reproducibility and precision. BMC Bioinformatics 11:491.
  2. Thoh M, Kumar P, Nagarajaram HA, et al. (2010) Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses. J Biol Chem 285(8):5888-95.
  3. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214(2):149-60.
  4. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45.
  5. Coondoo A (2011) Cytokines in dermatology - a basic overview. Indian J Dermatol 56(4):368-74.
  6. Alameddine M, Naja F, Abdel-Salam S, et al. (2011) Stakeholders' perspectives on the regulation and integration of complementary and alternative medicine products in Lebanon: a qualitative study. BMC Complement Altern Med 11:71.
  7. Schievella AR, Chen JH, Graham JR, et al. (1997) MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase. J Biol Chem 272(18):12069-75.
  8. Xu G, Shi Y (2007) Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res 17(9):759-71.
  9. Munz B, Hildt E, Springer ML, et al. RIP2, a checkpoint in myogenic differentiation. Mol Cell Biol 22(16):5879-86.

Resources

Apoptosis Information—Find application notes, webinars and other useful educational resources to help you navigate the complex world of apoptosis research.

BioProbes Journal of Cell Biology Application—Stay up-to-date with highlights of the latest breakthroughs and get information about new technologies and products.